导读
Bischler−Napieralski关环反应是药物化学中合成氮杂环分子的一类高效反应。虽然该反应从发现至今已有一百多年的历史,但是其应用范围主要局限在药物中间体及天然产物的合成上,将其用于合成发光氮杂稠环共轭分子及其聚合物的研究还少有文献报道。近年来,陈于蓝课题组以这一反应为关键步骤,在氮杂稠环类分子的设计、合成与响应特性的研究方面取得了系列进展。
跳转阅读→2019年底,医药化工企业老板为什么都在内部转发这篇?
图一. Bischler−Napieralski关环反应合成氮杂稠环共轭分子
首先,针对具有大π结构的1,10-邻菲罗啉衍生物的合成方法有限、反应条件苛刻等问题,他们根据Bischler−Napieralski关环反应的机理,通过酰胺前体的合理设计,在苯环的邻位同时引入两个酰胺基团,其分别与相连的芳环经历两重关环反应,将这一反应成功拓展至稠环1,10-邻菲罗啉衍生物及类似物的合成上,。在此基础上,结合不同的聚合方法和共聚单体,获得了一系列基于稠环邻菲罗啉单元的交替共聚物、多嵌段聚合物和三维微孔聚合物,分别探索了这些材料在荧光传感、近红外成像等方面的应用(Macromolecules2016,49, 4088;Chin. J. Polym. Sci. 2016,34, 1319; Mater. Chem. Front. 2017,1, 2638; ACS Appl. Bio Mater.,2018,1, 473.)。
此外,考虑到可溶性4,9位、4,10位双氮杂芘的合成具有挑战,他们通过二联苯酰胺前体的合理设计和合成条件的优化,通过关环成功制备了含不同取代基的4,9-,4,10-双氮杂芘,实现了氮杂位点的精确控制。相关成果发表在J. Org. Chem.2019,84,3953上。 (记得关注标题下方公众号:化学加)
进一步可将这一反应用于多氮杂盘状PAH分子的合成中,设计合成了两个不同烷基链取代的大盘状氮杂稠环分子,并详细研究了其介晶相结构,分别获得室温塑晶和液晶相材料,它们在固相都发射较强的荧光,在机械力作用下,其聚集态结构发生变化,引起荧光的变化。并且由于其介晶相结构的不同,两个分子的力致荧光变化具有不同的灵敏度:相比于塑晶分子,液晶相的流动性更有利于提高材料的机械响应性能。因此,这类分子是目前为止少有的平面性好、共轭程度大的基于PAH的力致荧光材料。相关成果发表在Angew. Chem. Int. Ed. 2018,57, 6161上。
考虑到Bischler−Napieralski关环反应的高效性,近期,他们利用四重、分步关环的策略,合成了一类5,6,12,13-四氮杂二苯并[cd, lm]苝类材料(c-TAPP-H,c-TAPP-T)。氮杂二苯并[cd, lm]苝(azaperopyrene)是一种经典的稠环芳烃,具有独特的“扶手椅型(armchair)”的边缘结构,因其优异的光电性质引起研究者们的广泛关注。目前报道的氮杂二苯并[cd, lm]苝衍生物主要有两类,分别在2,9-位点(结构B)和1,3,8,10-位点(结构C)引入氮原子。而在其5,6,12,13位同时引入氮原子还缺少有效的合成方法,尽管理论研究已表明,相比于分子长轴方向的结构变化,在短轴位置进行修饰将对分子的能级和光电性质产生更重要影响。
图二. 二苯并[cd, lm]苝及其氮杂衍生物
图三.一维c-TAPP-H和二维c-TAPP-T微晶的光波导性质研究
这一系列研究表明,合理的分子设计和合成条件的优化可以使Bischler−Napieralski反应这一古老的关环方法焕发出新的生机和活力,极大地推动了基于新型氮杂稠环分子的光电功能材料的发展。
来源 | 天津大学 编辑 | 化学加